Folded FIFOs

Rajit Manohar

Computer Science Department
California Institute of Technology

Caltech-CS-TR-95-09

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display acurrently valid OMB control number.

1. REPORT DATE 3. DATES COVERED

10 JUL 1995 2. REPORT TYPE 10-07-1995 to 10-07-1995
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Folded FIFOs

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Defense Advanced Resear ch Projects Agency,3701 North Fairfax REPORT NUMBER
DriveArlington,VA,22203-1714

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

seereport

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17.LIMITATION OF | 18 NUMBER | 19a NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 11
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

| | TR/95/09 -1
Folded FIFOs

Rajit Manohar*
Department of Computer Science

California Institute of Technology
Pasadena, CA 91125.

July 10, 1995
Abstract: We present two distributed implementations of first-in first-out mes-
sage buffers. The solutions presented reduce the delay between insert and delete
operations on the buffer when the buffer is empty. The designs are then modi-
fied so as to offer bounded-response-time. The solutions presented use a CSP-like
notation and are suitable for transformation into a VLSI circuit.

Keywords: distributed systems, systolic designs, bounded-response-time, mazi-
mum storage utilization, buffers, VLSI

1. Introduction.

A folded FIFO is an implementation of a distributed first-in first-out message buffer. Two operations
are permitted: a push operation inserts data into the FIFO; a pop bperation removes a data item from the
FIFO. Ordinarily, a distributed FIFO consists of a series of one-place buffers. If the FIFO remains relatively
empty, then the delay between a push and a pop operation is proportional to the size of the buffer. In a
folded FIFO, we try to short-circuit the path taken by the data so that this delay is reduced. Fig. 1 shows

the way in which data can move in a folded FIFO.

Fig. 1: Folded FIFO data flow.

In this paper, we describe two implementations of a folded FIFO using CSP-like specifications (cf. [1])
with probes (cf. [3]). We provide informal arguments justifying the correctness of the designs. The designs
presented are systolic and distributed, which makes them suitable candidates for transformation into a VLSI
circuit (cf. [4]).

2. Bounded-Response-Time FIFOs.

A design for a FIFO has a’bounded—respons_e—time if the time between two successive permissible oper-
ations is independent of the capacity of the FIFO. A detailed discussion of this phenomenon can be found
in [2], where it is also shown that there does not exist a distributed FIFO implementation that has both

bounded-response-time and maximum storage utilization. This fact is based on the following three assump-

tions:

* e-mail: rajit@vlsi.cs.caltech.edu. The research described in this report was sponsored by the Advanced Research Projects

Agency and monitored by the Office of Army Research.

TR/95/09 -2

1‘._ Movement of data in one direction corresponds to movement of a vacancy in the opposite direction.

2. A vacancy can cover only a bounded path in bounded time.

3. The hufnber of paths not exceeding a given length between the external push and pop port is

bounded. ,

It is unreasonable to assume that the second assumption is violated in any implementation of a FIFO. The
third assumption cannot be violated if every cell has a fixed, ’ﬁnite number of neighbors (as in a VLSI
implementation). However, the first aséumption can be violated by allowing swap operations. Using swaps,
there are implementations of a folded FIFO with constant-response-time. Intuitively, a swap operation
introduces temporary storage which violates the maximum storage utilization restriction.

We can either try to maintain a low-energy configuration (described below) in which we do not move a
data item unless we are forced to do so, or we can aim for an implementation that has bounded-response-
time. However, we know that there is no implementation of a FIFO that has bounded-response-time and
maximum storage utilization. Therefore we explore the possibility of constructing a folded FIFO with a
low-energy cbnﬁguration.

For low energy, we must avoid moving data unnecessarily (cf. [5], [6]). This means that we must keep
the folded FIFO in a compact configuration, i.e. we must not have any “holes” in the FIFO. Fig. 2 shows

a configuration that should not be permitted, where the shaded cells are those that contain valid data.

Fig. 2: Folded FIFO with “holes.”

Suppose a series of pop operations were performed from the configuration shown in Fig. 2. Then, the data
items in the cells after the holes would have moved through more cells than necessary, resulting in a waste

of energy.

3. Solution 1.

If we assume that push and pop are mutually exclusive, then we can combine the two processes that are

above one another (cf. Fig. 1) into a single process. We obtain the process structure shown in Fig. 3.

Fig. 3: Folded FIFO—single process.

Notice that we have potentially sacrificed 50% throughput by making this assumption since we can no longer

have concurrent push and pop operations.

For minimum energy, we will try to maintain the following invariant: If a process does not hold two

TR/95/09 -3

data items, no process to its right holds any data items. Keeping this invariant in mind, we now describe
the possible states for a folded FIFO cell (cf. Fig. 4).

push put
pop get
- pop’ get’

Fig. 4: Folded FIFO cell—single process

The FIFO cell can be in one of four different states:
o (empty). The cell has no data.
o (half). The cell has one data item (stored in z).
o (full A last). The cell has two data items (z has been inserted after y) and every cell to its right is
' empty.
e (full A —last). The cell has two data items (z has been inserted after y) and the cell to its right is not
empty.
Given these states, CSP for the cell is straightforward and is given below. For clarity, we write the specifi-
cation in terms of state transitions. Each action is terminated with the next state of the cell. Note that in
fact the specification indicates a single non-terminating process.
The only interesting case is when a pop operation is performed and the cell is in state (full A —last). To
determine the next state, it is necessary to know if the next cell (to the right) is empty. This information is

sent with the data along channel pop’.

(empty) = push?z; (half)

' (half) = [push — y :=z; push?z; (full A last)
I pop’ — pop'ltrue; pop'z; (empty)
1

(full A last) = [push — put!z; push?z; (full A —last)
0 pop’ — pop'\false; poply; (half)
1

(full A =last) = [push — put!z; push?z; (full A -last)
0 pop’ — pop'!false; poply; get'?h; get?y; [b — (full A last)l-b —s (full A —last)]
1

Remark. Since the operations on pop and pop’ (and similarly get and get') are always joint, we

could combine the two channels into a single channel that transmits a pair. (End of Remark.)

Thie additional copying involved in the assignment y := z can be avoided by adding additional states in
which only y contains data, or y has been inserted before z in the FIFO. The last cell can be obtained by
assuming that put and get operations will deadlock when attempted in the last cell. The pop’ channel can

be dropped from the first process by replacing probes on pop’ with probes on pop.

TR/95/09 -4

- Although this solution does have low eneigy, notice that the FIFO will deadlock if a push is performed
when the FIFO is full (or if a pop is done when the FIFO is empty). This is a direct result of the assumption
that push and pop operations are mutually exclusive, which allowed us to combine two processes into a single

cell. We now present another solution that does not suffer from this. problem.

4. Solution 2. -
~ The cell for the second solution contains the channels shown in Fig. 5.

push put

push’ put’
|x

pop get

pop’ get’

Fig. 5: Folded FIFO cell—concurrent push, pop.

Two additional channels are used to propagate information backward in the FIFO. In addition, the data
channel X is introduced for communication within a cell. The dotted line around the processes indicates
that the cell begins as one process, and then may fork into two processes which can then recombine into a
single process.

The primed channels are used to indicate that a process is ready for communication, and the value
passed along the channel indicates how the communication action is to continue. A true value indicates that
the initiated data action should continue. A false value indicates that the data should take an alternative
route. '

Once again we maintain the invariant that if the cell is either in the (empty) or (half) state, then every
cell to its right is empty. The sequential states of the cell are as follows:

o (empty). The cell has no data.

e (half). The cell has one data item stored in z.

o (split). The cell has two data items. This state is split into two processes:
o (top) for the process representing the top cell, and
o (bottom) representing the cell on the bottom.

We use the single vertical bar “|” to denote non-deterministic choice (i.e. requiring arbitration). Finally,
notice that the CSP for the (half) state contains a fork. The join for this fork is in the (top) and (bottom)
- states—they return to the (half) state concurrently, since this state change is preceeded by a communication
on channel X.

Given the meaning of the primed channels, the CSP for the various states is almost straightforward. In
the (empty) state, a push’ can continue, which corresponds to sending a value of true along push’ and then

accepting a data item. A pop operation in this state cannot succeed, and therefore returns the value false.
(empty) = [push’ — push’ltrue; push?z; (half)

| pop’ — pop'!false; push'\false; (empty)
]

TR/95/09 -5

+In s_tat_e (half), one can accept both a push anda pop operation, and the CSP for this state is given
below. Notice that on accepting a push, we enter the S’plit state allowing concurrent push and pop operations.
(half) = [push’ — push’ltrue; push?y; (top) || (bottom); (half)
| pop" — popltrue; pop!z; (empty) '
1.

The (bottom) state is simple. Since it only has to respond to pop requests and it contains data, it begins
by accepting a pop operation. Finally, it requests data from the cell to its right. If the pop succeeds, then it
remains in the (bottom) state. Otherwise, it returns to the (half) state by accepting data from the cell on

top.

(bottom) = pop'!true; pop!z; get'?h; [b — get?z; (bottom) 1 —b — X?z; (skip)]

The final state is the most complex. In this state, a cell has to accept two requests; an external push
request, and an X request.
(top) = [push’ — put'?b; [b — push'ltrue; putly; push?y; (top)
0 -b— Xly; (skip)
]
| X — put'?h; X'y; (skip)
]

Notice that this solution has two arbiters: one arbitrating between push’ and pop’ in {half), and one
arbitrating between push! and X in (top). The first arbiter between push’ and pop’ cannot be avoided
since we are allowing concurrent push and pop operations. However, we make the following observation:
in the CSP for (top), after probing X we know that the value returned in b will be false. Observing the

similarity between the two guarded commands, we can rewrite (top), removing the arbiter!

(top) = [push’ v X1; put'?b; [b — push'ltrue; putly; pushly; (top)
0 -b— Xly; (skip)
]

Finally, the last cell can be obtained by assuming that *[push'!false] || *[pop'!false] is the process to its
right. For the leftmost process, the push’ and pop’ channels can be removed by replacing the probes with

probes on push and pop. Finally, the pop' selection in the leftmost {empty) process should be removed.

5. Bounded-Responsé-Time Solutions.

We can make either of these solutions bounded-response-time by introducing temporary storage, if we
assume that the environment does not try to insert items into a full buffer. We do so by introducing a
variable ¢{. However, note that this variable is written and read exactly once. This allows us to implement
variable ¢ efficiently in a VLSI circuit.

In the first solution, a pop is constant-response-time. A push is not constant-response-time only if the
FIFO cell is full. We modify the full state as follows:

TR/95/09 -6

‘(ful.l Alast) = [push — t = z; putlt opdsh?a:; (full A -last)
o 0 pop’ — pop'!false; poply; (half)
]

(full A —last) = [push — ¢ = z; put!t e push?z; (full A —last)
0 pop’ — pop'!false; poply; get'7h; get?y; [b — (full Alast) I —~b — (full A -last)]
]

In the second solution, a pop is constant-response-time. Using a strategy similar to the one outlined
above is not enough since we have to make both push and push’ constant-response-time. To make push’
constant-response-time in process (top), we must complete the push’ operation by sending it a true value.
Unfortunately, this prevents us from removing the arbiter between X and push’. As a start, suppose we

complete the push’ operation early.

» (top) = [push’ — push''true; put'?h; [b— t:=1y; put!t e push?y; (top)
0 -b— Xly; (?7)
]
| X — put'?h; X'y; (skip)
]

Originally, we entered the (half) state after X!y and the push operation was completed there. Since
we have completed push’, we must also complete push. As a result, we need to distinguish between the two
different X actions. To do so, additional information is sent along X. Finally, (bottom) is modified to reflect

these changes. The final solution is:

(top) = [push’ — push’Vtrue; put'?h; [b — ¢:= y; put!t e push?y; (top)
0 =b — X!(true,y); push?y; (top)
]
| X — put'?h; X'(false,y); (skip)
]

(bottom) = pop'ltrue; poplz; get'?h; [b — get?z; (bottom) _
0 b — X?c,z); [¢~ (bottom) 0 —c — (skip)]
]

6. Correctness Proof.

For the arguments outlined below, we will use the following terminology. An invariant will be used to
refer to a loop invariant. In other words, the “invariants” will hold only at the beginning of any state. We
will assume that s is a ghost variable that indicates the current state. e.z is a boolean value that is true

if and only if data register x is empty, and f.z is defined to be —e.z. We assume that each data value has

TR/95/09 -7

associated with it a sequence number, and that ord.z denotes the sequence number of z. In other words,

data value z corresponds to the data that was inserted by the ord.zth

push operation. Note that ord.z is
defined if and 6nly if f.z holds. For a cell ¢ we use c.v to denote a variable in cell c. 7t is the cell immediately
to the right of the current ceil, and It is the cell to the left. We will use “pre state” to refer to the stable state
before any actions were executed, and “post state” to refer to the stable state after the actions mentioned
were exéecuted. \ v '

“We have two proof obligations: (I) there is no deadlock amongst the processes; and (I) the kth pop op-
eration receives the data, that was pushed by the kth push operation. We now provide correctness arguments

for the first two solutions that were presented.

SoruTION 1.

The following invariants are used to justify the names of the states.

s = (empty) = (e.z A e.y A rt.s = (empty)) (1)
s = (half) = (f.z A e.y A rt.5 = (empty)) (2)
s = (full A last) = (f.z A f.y A rt.s = (empty)) (3)
s = (full A ~last) = (f.z A f.y A rt.s # (empty)) (4)

The following invariant indicates the FIFO nature when a cell is full.
s = (full A last) = ord.y +1=ord.z ' (5)
The following two invariants indicate the FIFO nature when s = (full A ~last).
s = (full A —last) A rt.s = (half) = (ord.(rt.z) + 1 = ord.z A ord.y + 1 = ord.(rt.z)) (6)
s = (full A —-ldst) Af(rty) Af(rt.z) = (ord.(rt.z)+1=ordz Aord.y +1= ord‘(rt.é/)) (7)

Remark. The rightmost cell can never enter the state (full A —last) since communication on
put deadlocks. (End of Remark.)

Initially, every cell is in state (empty), and e.z A e.y holds in each cell. Therefore all the invariants hold.
Note that for a cell to change stéte, a communication action must be performed with the cell.

Notice that the value sent on channel pop’ is true if and only if the next state is (empty). This fact will be
necessary to establish the state invariants from state (full A ~last).

We consider.the actions from every state and demonstrate that all the invariants hold. We will ignore

invariants that hold trivially in the post state.

s = (empty). Only a push operation can be performed. Now, f.z will hold after push?z. Since (1) holds
in the pre state, we conclude that (2) holds in the post state.
s = (half).
- pop'. Since sending data empties a register, and using (2) in the pre state, we can conclude that
(1) holds in the post state, in which we enter state {empty).
push. On completion, we enter state (full A last). Clearly the previous cell was in state (full A

—last) before it began the actions leading to the push operation (from the state invariants). Since

TR/95/09 -8

_'th_e invariants (6), (4) held in the pre state for the previous cell and e.y was true in the pre state,
ord.y + 1 = ord.z holds in the post state since £ was obtained from z in the left cell. For the
leftmost cell, ord.y + 1 = ord.z holds because from the definition of ord. Also, f.z A f.y holds in
the post state. Finally, (2) in the pre state implies that rt.s = (empty). Therefore we have (3) and
(5) in the initial state of (full A last).

s = (full A last). ‘
pop’. In the post state, e.y hblds. Also, in the pre state, ord.y + 1 = ord.z from (5). Examining
the pre state of the cell on the left, we note that in its post state, (6) will hold since y is copied
into &t.y. Finally, (3) in the pre state implies (2) in the post state.

push. In the post state, rt.(f.w) holds since in the pre state rt.s = (empty) by (3). The invariant
(7) holds in the post state because (7) was true in I/t in the pre state for lt. Finally, (4) holds
because rt will change to a non-empty state.

s = (full A —last).
pop'. Sending y to the left maintains (7) for the left cell because (7) holds in in the pre state.
Finally, the get operation maintains (7) in the post state because of (7) in the pre state. Finally,
rt.s = (empty) holds if and only if we change to (full A last) because of the observation made about

the pop’' channel.

push. Similar to the reasoning for (full A last).

Note that push, pop operations can never deadlock since they are probed. Also, each channel is only
probed at one end. A cell can never be suspended at a get operation (from the state invariants). Suppose
the cell is suspended at a put operation. A put suspends forever if and only if the cell to its right is also
suspended. Therefore the cell to the right must be suspended on a put as well. Inducting to the right, we
note that every cell must have f.z A f.y. Using the state invariants, we also note that every cell to the left
must also have f.z A f.y to be true. Therefore, the FIFO is full. Therefore, suspension implies the FIFO is
full. An external pop suspends if the FIFO is empty since the (empty) state only accepts a push operation.

Finally, the invariants (5), (6), and (7) together imply that the kth pop operation receives data entered
by the kth push operation. |

~SOLUTION 2.

We will consider (split) to be the state in which we have two processes. The following invariants are

- used to justify the names of the states.

s = (empty) = (e.z A e.y A rt.s = (empty)) (8)
s = (half) = (f.z A e.y A rt.5 = (empty)) ' (9)
s = (split) = (fac Af.y) (10)

Finally, we have the following three invariants:
s = (split) A rt.s = (empty) = (ord.z + 1 = ord.y) (11)
s = (split) A rt.s = (half) = (ord.(rt.z) + 1 = ord.y A ord.z + 1 = ord.(rt.z)) (12)

TR/95/09 -9

s= (‘s_plz't) A rt.s'= (split) = (ord.(rt:y) + 1= ord.y A ord.z +1l= ord.(rt.z)) - (13)
Notice that a false value is sent along a primed channel if and only if the cell is in the (empty) state and
a pop’ was requested. Furthermore, note that if X is true in (top) before a put’ operation is performed,
then this means that a put’ operation must succeed and return false. Also, if a true value is sent along a
primed channel, then the data action along that channel must succeed. We will use these observations in

the argument' outlined below.

s = (empty).
push'. Entering state (half), we must check that (12) and (9) are maintained. The latter holds
trivially since no communication is performed with the rt cell, and (8) was true in the pre state.

(12) holds because (11) was true in the pre state for It.
pop’. All invariants are maintained trivially.
s = (half).
push'. We may violate (11), (10), or (13). (10) holds trivially. (11) holds for the cell because (12)

was true for /. Finally, (13) holds for it because (12) holds in I/, and (13) was true in the cell to
the left of z.

pop’. Clearly (8) holds in the post state from (9). From (12) in the pre state for It, we can conclude
that (11) holds in It in the post state of It.
s = (split).

(bottom). Consider the execution sequence reaching (bottom). This satisfies all invariants in the post
state for reasons similar to those in the previous solution. Consider the execution sequence reaching
(half). Since get' returned false, it follows that rt.s = (empty). Therefore, (9) is maintained. In
addition, this means that (11) held in the pre state, and so we can conclude that (12) holds for it
in the post state for /t.

(top).” Consider the execution sequence reaching (top). It satisfies all the invariants in the post
state for reasons similar to those in the previous solution. Consider the execution sequence reaching

(half). Using the arguments for (bottom), once again we conclude that the invariants are maintained.

Notice that push and pop actions can never suspend because of the observations made earlier. Similarly,
X can never suspend. A pop’ can never suspend. Therefore the only possible suspension is on a push’ in state
(split). Therefore the cell must be suspended on a put' (otherwise the push’ can be completed eventually).
- Inducting, we see that all cells to the right must be suspended on a put’. Also, the invariants imply that all
cells to the left must be in the {split) state. Therefore, the entire FIFO is full. Therefore we have absence
of deadlock in the case that the FIFO is not full. When the FIFO is full, a push’ can suspend. However, it
will only suspend until a pop’ operation is performed.

Finally, the FIFO property follows from the FIFO invariants, namely (11), (12), and (13).

7. Conclusion.

We have presented two solutions to the folded FIFO problem with arguments justifying their correctness.

TR/95/09 -10

Both of them have a low energy configuration. Given the three restrictions from [2], it is known that there
does not exist a FIFO implementation with constant-response-time. However, by introducing temporary
storage, we have demonstrated that the low energy solutions can be converted into ones with bounded-

response-time.

Appendix -
The notation we use is based on Hoare’s CSP [1]. A full description of the notation and its semantics
can be found in [4]. What follows is a short and informal description of the notation we use.
e Assignment: g := b. This statement means “assign the value of b to a.”
¢ Selection: [G1 — S1[...] Gn — Snl, where G;’s are boolean expressions (guards) and S;’s are
program parts. The execution of this command corresponds to waiting until one of the guards is
true, and then executing one of the statements with a true guard. The notation [G] is short-hand
for [G — skip]. If the guards are not mutually exclusive, we use the vertical bar “|” instead of
0
¢ Repetition: *[G1 — S1[]...[] Gn — Sn]. The execution of this command corresponds to choosing
one of the true guards and executing the corresponding statement, repeating this until all guards
evaluate to false. The notation *[S] is short-hand for * [true — S].
e Send: X'e means send the value of e over channel X.
e Receive: Y 7v means receive a value over channel Y and store it in variable v.
o Probe: The boolean expression X is true iff a communication over channel X can complete without
suspending.
e Sequential Corhposition: S; T
o Parallel Composition: S || T.

References

[1] C.AR. Hoare. Communicating Sequential Processes. CACM 21(8):666-677, 1978

[2] J.L.W. Kessels and M. Rem. Designing systolic, distributed buffers with bounded response time.
Distributed Computing 4(1) pp. 3743, 1990.

[3] A.J. Martin. The Probe: An addition to Communication Primitives. Information Processing Letters
20:125-130, 1985.

[4] A.J. Martin. Compiling Communicating Processes into Delay-insensitive VLSI circuits. Distributed
Computing, 1(4), 1986.

[5] J.A. Tierno. An Energy-Complexity Model for VLSI Computations. PhD Thesis, Caltech. January
1995.

[6] J.A. Tierno and A.J. Martin. Low-energy asynchronous memory design. Proc. International Sympo-

sium on Advanced Research in Asynchronous Circuits and Systems, November 1994.

